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Abstract The augmented Lagrangian method is a classical method for solving constrained optimiza-

tion. Recently, the augmented Lagrangian method attracts much attention due to its applications to

sparse optimization in compressive sensing and low rank matrix optimization problems. However, most

Lagrangian methods use first order information to update the Lagrange multipliers, which lead to only

linear convergence. In this paper, we study an update technique based on second order information

and prove that superlinear convergence can be obtained. Theoretical properties of the update formula

are given and some implementation issues regarding the new update are also discussed.
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1 Introduction

The invention of the augmented Lagrange function is one of the most important milestones
in the development of nonlinear optimization. Consider the general nonlinear optimization
problem which has the following form

min
x∈Rn

f(x) (1.1)

s.t. ci(x) = 0, i = 1, . . . ,me; (1.2)

ci(x) ≥ 0, i = me + 1, . . . ,m, (1.3)

where f(x), ci(x) (i = 1, . . . ,m) are continuous function defined in R
n and m ≥ me are two

non-negative integers. Pioneer works on the augmented Lagrange function were given by
Hestenes [6], Powell [8], Rockafellar [9] and Fletcher [4]. The augmented Lagrange function
for general constrained optimization problem (1.1)–(1.3) is defined by

P (x, λ, σ) = f(x) −
m∑

i=1

[
λ(i)ci(x) − 1

2
σ(i)(ci(x))2

]
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−
m∑

i=me+1

⎧
⎪⎨

⎪⎩

λ(i)ci(x) − 1
2
σ(i)(ci(x))2, if ci(x) < λ(i)/σ(i),

1
2

(λ(i))2

σ(i)
, otherwise.

(1.4)

Here, σ(i) > 0 (i = 1, . . . ,m) are the penalty parameters, and λ = (λ(1), . . . , λ(m))T are the
Lagrange multipliers satisfying λ(i) ≥ 0 for i > me.

One good property of the augmented Lagrange function is that it is an exact penalty function
if λ is the Lagrange multiplier at the solution and if the penalty parameters are sufficiently large.
Due to this nice property, the augmented Lagrangian method generates a sequence of points
{xk, k = 1, 2, . . .}, each of them is an approximate solution of

min
x∈Rn

P (x, λk, σk). (1.5)

Define the vector c(−) by

c
(−)
i (x) =

⎧
⎨

⎩
ci(x), i = 1, . . . ,me,

min[ci(x), 0], i = me + 1, . . . ,m.
(1.6)

It is easy to see that the minimizer x̄k of the unconstrained optimization problem (1.5) is
a KKT point of the original constrained optimization problem (1.1)–(1.3), if x̄k is a feasible
point of (1.2) and (1.3), namely c(−)(x̄k) = 0. Thus, the augmented Lagrangian method tries
to update λk and σk to reduce ‖c(−)(x̄k)‖ to certain error level. The augmented Lagrangian
method can be stated as follows [10].

Algorithm 1.1 (Augmented Lagrangian method)

Step 1 Given starting point x1 ∈ R
n, λ1 ∈ R

m with λ(i)
1 ≥ 0 (i > me); σ

(i)
1 > 0 (i = 1, . . . ,m);

ε ≥ 0, k := 1.

Step 2 Find an approximate solution xk+1 of (1.5).
If ‖c(−)(xk+1)‖∞ ≤ ε, then stop.

Step 3 For i = 1, . . . ,m, set

σ
(i)
k+1 =

⎧
⎨

⎩
σ

(i)
k , if |c(−)

i (xk+1)| ≤ |c(−)
i (xk)|/4,

max[10σ(i)
k , k2], otherwise.

(1.7)

Step 4 Obtain λk+1 by

λ
(i)
k+1 = λ

(i)
k − σ

(i)
k ci(xk+1), i = 1, . . . ,me, (1.8)

λ
(i)
k+1 = max{λ(i)

k − σ
(i)
k ci(xk+1), 0}, i = me + 1, . . . ,m, (1.9)

k := k + 1, go to Step 2.

For more details of the augmented Lagrangian method and its properties, please see Conn
et al. [3] and Sun and Yuan [10].

The software package LANCELOT, based on the augmented Lagrangian method, is one of
most efficient nonlinear optimization solvers. In 1994, Andrew Conn, Nick Gould and Philippe
Toint won the Beale–Orchard-Hays prize from the Mathematical Programming Society for their
work on the LANCELOT package. Recently, the augmented Lagrange function method attracts
much attention due to the fact that it is widely used in L1 minimization for compressive sensing
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problems (for example, see [2, 13, 14]), semi-definite programming (for example, see [12, 16])
and low rank matrix optimization problems) (for example, see [7, 15]).

The key parts of an augmented Lagrangian method are finding an approximate minimizer
of the augmented Lagrange function and updating the Lagrange multipliers and the penalty
parameters. We notice that in all the augmented Lagrangian methods, the update rule for the
Lagrange multiplier λ is (1.8)–(1.9). The aim of the paper is to investigate the properties of
the update techniques and to explore whether more efficient updates are possible.

The paper is organized as follows. In the next section, we re-derive an update formula for
λ which was discovered by Buys [1]. In Section 3, some properties of Buys’s update are given.
Finally, brief discussions are given in Section 4.

2 New Derivation of an Old Update Formula for λ

In this section, we re-derive an old update formula for Lagrange multipliers. First we will derive
the update formula by considering the simple case when all constraints are equality constraints.
Then we will extend our results to the general case when there are both equality and inequality
constraints.

2.1 Equality Constraints

For simplicity, first we consider only equality constraints. Let x∗ be a local minimizer of equality
constrained optimization problem

min
x∈Rn

f(x) (2.1)

s.t. ci(x) = 0, i = 1, . . . ,m, (2.2)

and λ∗ be the corresponding Lagrange multiplier λ∗ satisfying

∇f(x∗) −
m∑

i=1

(λ∗)(i)∇ci(x∗) = 0. (2.3)

If the second order sufficient condition holds at x∗, there exists a positive number σ∗ such that
P (x, λ∗, σ) is an exact penalty function for any σ as long as

σ(i) ≥ σ∗ for all i = 1, . . . ,m. (2.4)

Since the aim of this paper is to investigate efficient techniques for updating λ, we assume that
σ

(i)
k ≥ σ∗ for all k.

Let x̄k be a minimizer of P (x, λk, σk), the optimality condition implies that

∇f(x̄k) −
m∑

i=1

[λ(i)
k − σ

(i)
k ci(x̄k)]∇ci(x̄k) = 0. (2.5)

Comparing (2.3) and (2.5), we can easily see that, λ(i)
k − σ

(i)
k ci(x̄k) are approximate Lagrange

multipliers. In fact, if ∇ci(x̄k) (i = 1, . . . ,m) are linearly independent, (2.5) indicates that
λ

(i)
k −σ(i)

k ci(x̄k) (i = 1, . . . ,m) is the unique solution of the linear system A(x̄k)λ−∇f(x̄k) = 0,
hence it is also exactly the same multiplier of Fletcher’s differentiable exact penalty function in
which λ is the least square solution of minλ ‖A(x)λ−∇f(x)‖2

2.
In a practical augmented Lagrangian method, the iterate point xk+1 is an approximation

to x̄k, hence it is reasonable to set the next Lagrange multipliers by

λ
(i)
k+1 = λ

(i)
k − σ

(i)
k ci(xk+1), (2.6)
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which is exactly (1.8) when all the constraints are equalities.
The update formula (2.6) is used by most augmented Lagrangian methods, for example,

see [3] and [10]. Now we consider the convergence property of the update formula (2.6).
Consider the ideal case when xk+1 = x̄k = argminP (x, λk, σk). Define the diagonal matrix
Σk = diag[σ(1)

k , . . . , σ
(m)
k ], the optimality conditions (2.3) and (2.5) give that

[∇2
xxL(x∗, λ∗) +A(x∗)ΣkA(x∗)T](xk+1 − x∗) +O(‖xk+1 − x∗‖2

2) = A(xk+1)(λk − λ∗), (2.7)

where L(x, λ) = f(x) − ∑m
i=1 λici(x) and A(x) is defined by

A(x) = [∇c1(x),∇c2(x), . . . ,∇cm(x)] . (2.8)

Denote W (x∗, λ∗, σk) = ∇2
xxL(x∗, λ∗) + A(x∗)ΣkA(x∗)T, which is positive definite due to our

assumption that σ(i)
k ≥ σ∗ for all k. Thus,

λk+1 − λ∗ = λk − λ∗ − ΣkA(x∗)T(xk+1 − x∗) +O(‖xk+1 − x∗‖2
2)

=
[
I − ΣkA(x∗)T[W (x∗, λ∗, σ)]−1A(x∗)

]
(λk − λ∗) + o(‖λk − λ∗‖). (2.9)

Therefore, the above relation indicates that, unless

A(x∗)T∇2
xxL(x∗, λ∗)A(x∗) = 0,

‖λk−λ∗‖ converges to zero only Q-linearly. Consequently, it follows from (2.7) that xk converges
to x∗ only Q-linearly. Indeed, Sun and Yuan [10] shows that

[
ΣA(x∗)T +A(x∗)+∇2

xxL(x∗, λ∗)
]
(xk+1 − x∗) ≈ A(x∗)+∇2

xxL(x∗, λ∗)(xk − x∗). (2.10)

Consider the following toy problem:

min
(x1,x2)∈R2

−1
2
(x2

1 − x2
2) (2.11)

s.t. x1 = 0. (2.12)

This is easy to see that the solution of (2.11)–(2.12) is x∗ = (x∗1, x
∗
2)

T = (0, 0)T and the
corresponding Lagrange multiplier at x∗ is λ∗ = 0. For any σ > 1, the augmented Lagrange
function −1

2 (x2
1 − x2

2) − λ∗x1 + 1
2σ(x1)2 is an exact penalty function. We consider the case

when we choose σ = 2.01. It turns out that, for any given λk, the minimizer of the augmented
Lagrange function − 1

2 (x2
1 − x2

2) − λkx1 + 1
2σ(x1)2 is x(1)

k+1 = 100
101λk and x(2)

k+1 = 0. Thus,

λk+1 = λk − 2.01 ∗ 100
101

λk = −100
101

λk.

This example and our above theoretical analysis indicate that the update technique (2.6)
leads to only linearly convergence. In general, (2.9) indicates that ‖λk+1 − λ∗‖ = O( 1

σk
)‖λk −

λ∗‖) if σk is very large. Thus, when the penalty parameters σk remain bounded, update
formulae (1.8)–(1.9) converge only linearly.

Now we derive an update formula for the Lagrange multipliers that ensures superlinearly
convergence. Consider λ is an approximation to the exact Lagrange multiplier λ∗. Let x(λ) be
the minimizer of P (x, λ, σ). The optimality condition implies that

∇xf(x(λ)) − A(x(λ))λ+A(x(λ))Σc(x(λ)) = 0. (2.13)

We try to obtain an update formula by applying Newton’s method to

c(x(λ)) = 0, (2.14)
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which can be written as

c(x(λk)) +A(x(λk))T
(
∂x

∂λ

)T

λ=λk

[λk+1 − λk] = 0, (2.15)

where
∂x

∂λ
= [∇λx1(λ),∇λx2(λ), . . . ,∇λxn(λ)] . (2.16)

Differentiating (2.13) with respect to λ gives
[
∇2f(x) −

m∑

i=1

[λ(i) − σici(x)]∇c2i (x) +A(x)ΣA(x)T
](

∂x

∂λ

)T

= A(x), (2.17)

where x = x(λ). The above equation is the detailed form of the following relation

∇2
xxP (x, λ, σ)

(
∂x

∂λ

)T

= A(x). (2.18)

Thus, Newton’s method for (2.14) has the following form

c(x(λk)) +A(x(λk))T(∇2
xxP (x(λk), λk, σk)−1A(x(λk))[λk+1 − λk] = 0, (2.19)

which gives

λk+1 = λk − [
A(xk+1)T∇2

xxP (xk+1, λk, σk)−1A(xk+1)
]−1

c(xk+1), (2.20)

if we let xk+1 = x(λk). Unfortunately, the above update (2.20) is not new, it was first discovered
by Buys [1], and later discussed in [5]. Indeed, Fontecilla et al. [5] also considered other possible
updates for the Lagrangian multiplier λ. However, it should be pointed out that our technique
for deriving the update formula (2.20) is different from that of Buys [1]. We are trying to adjust
the Lagrange multiplier in order to satisfy the feasibility condition c(x(λ)) = 0 while Buys [1]
derived the update (2.20) thorough Newton’s method for the dual problem.

Now let us look at the toy example (2.11)–(2.12) again. For any λk and σk > 1, we have
that x(1)

k+1 = λk

σk−1 and x(2)
k+1 = 0. Thus, c(xk+1) = λk

σk−1 , A(xk+1) = [ 1
0 ], and

∇2
xxP (xk+1, λk, σk) =

⎡

⎣σk − 1 0

0 1

⎤

⎦ .

Updating formula (2.20) will give

λk+1 = λk − (σk − 1)
λk

σk − 1
= 0 = λ∗.

This indicates that the Augmented Lagrange function method with updating technique (2.20)
will find the exact solution of the toy problem after two iterations for any initial λ1 and any
σ1 > 1.

For general nonlinear equality constrained problems, we have the following result.

Theorem 2.1 Let x∗ be a KKT point of (2.1)–(2.2). If the gradient of the constraints
∇ci(x∗) (i = 1, . . . ,m) are linearly independent, and the second order sufficient condition holds
at x∗, if the penalty parameters σ(i)

k are large enough, then the local convergence rate of update
formula (2.20) is Q-quadratic in the sense that

‖λk+1 − λ∗‖ = O(‖λk − λ∗‖2
2). (2.21)
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Proof The assumptions of our theorem imply that A(x∗) is full column rank and the matrix
∇2

xxP (x∗, λ∗, σ∗) is positive definite for some fixed vector σ∗. Therefore, the matrix
[
A(x∗)T∇2

xxP (x∗, λ∗, σ̄)−1A(x∗)
]

is positive definite for any fixed vector σ̄ ≥ σ∗.
Define x(λ) to be the minimizer of P (x, λ, σ̄) and ψ(λ) = c(x(λ)). Thus, our update

formula for λ (2.20) is exactly Newton’s method for ψ(λ) = 0. Our assumption indicates that
ψ(λ∗) = 0 and ∇ψ(λ∗) is non-singular. Thus, when λk is sufficiently close to λ∗, we know
that (2.21) holds. �

A direct consequence of the above result is that ‖xk−x∗‖ converges to zero R-quadratically,
due to the fact that ‖xk − x∗‖ = O(‖λk − λ∗‖).
2.2 Inequality Constraints

Now we consider the general case when there are both equality and inequality constraints. Let
x∗ be a KKT point of (1.1)–(1.3). Denote x(λ, σ) be the minimizer of the augmented Lagrange
function P (x, λ, σ) defined by (1.4).

Define the sets E = {1, . . . ,me}, I = {me + 1, . . . ,m}, and

I(x(λ, σ)) = {i | i ∈ I, ci(x(λ, σ)) < λ(i)/σ(i)}.
The optimality condition for x(λ, σ) implies that

∇f(x(λ, σ)) −
∑

i∈E∪I(x(λ,σ))

λ(i)∇ci(x(λ, σ)) = 0. (2.22)

We assume that second order sufficient condition holds at x(λ, σ), which means that

W (λ, σ) = ∇2f(x(λ, σ)) −
∑

i∈E∪I(x(λ,σ))

[λ(i) − σ(i)ci(λ, σ)]∇2ci(x(λ, σ))

+
∑

i∈E∪I(x(λ,σ))

σ(i)∇ci(x(λ, σ))[∇ci(x(λ, σ))]T (2.23)

is positive definite.
Now, for fixed σ, our updating technique for λ is based on Newton’s method for the following

system of equations

ci(x(λ, σ)) = 0, i ∈ E ∪ I(x(λ, σ)), (2.24)

λ(i) = 0, otherwise. (2.25)

For given λk and σk, denote xk+1 = x(λk, σk), Jk = E ∪ I(xk+1), and

c̄k+1 = [ci(xk+1), i ∈ Jk]T, (2.26)

Āk+1 = [∇ci(xk+1), i ∈ Jk], (2.27)

λ̄ = [λ(i), i ∈ Jk]T. (2.28)

Our results in the previous section tell us that Newton’s method for (2.24)–(2.25) has the
following form:

λ̄k+1 = λ̄k − [ĀT
k+1W̄ (xk+1, λk, σk)−1Ā(xk+1)]−1c̄k+1, (2.29)

λ
(i)
k+1 = 0, i 
∈ Jk, (2.30)
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where

W̄ (xk+1, λk, σk) = ∇2f(xk+1) −
∑

i∈Jk

[λ(i)
k − σ

(i)
k ci(xk+1)]∇2ci(xk+1)

+
∑

i∈Jk

σ
(i)
k ∇ci(xk+1)(∇ci(xk+1))T. (2.31)

Thus, we have derived update formulae (2.29)–(2.30) for updating Lagrange multipliers in
augmented Lagrangian method applied to general nonlinear constrained optimization problems
(1.1)–(1.3). In the following, we will call (2.29)–(2.30) as Buys’s update.

3 Properties of Buys’s Update

In order to study the relations between Buys’s update (2.29)–(2.30) and the classic technique
(1.8)–(1.9), we need some elementary results on real matrices.

Lemma 3.1 Let the block matrix

B =

⎛

⎝B11 B12

B21 B22

⎞

⎠ ∈ R
n×n (3.1)

be nonsingular, where B11, B11, B21 and B22 are matrices in R
m×m, R

m×(n−m), R
(n−m)×m

and R
(n−m)×(n−m) respectively. If B22 is also nonsingular, then the matrix (B11−B12B

−1
22 B21)

is also nonsingular, and moreover, the block representation of B−1 can be written as

B−1 =

⎛

⎝B11 B12

B21 B22

⎞

⎠
−1

=

⎛

⎝H11 H12

H21 H22

⎞

⎠ (3.2)

such that

H11 = (B11 −B12B
−1
22 B21)−1. (3.3)

Proof This lemma can be proved by using the Schur complement (for example, see [11, Exer-
cise 20.3]). Here we give a direct proof. The representation (3.2) requires that

B11H11 +B12H21 = I, (3.4)

B21H11 +B22H21 = 0. (3.5)

It follows from (3.5) that H21 = −B−1
22 B21H11. Substituting this relation into (3.4), we see

that (3.3) holds. �

Theorem 3.2 Let A ∈ R
n×m be full column rank, B ∈ R

n×n be symmetric positive definite,
and H ∈ R

m×m be symmetric positive definite. Then
[
AT(B +AHAT)−1A

]−1
= H + (ATB−1A)−1. (3.6)

Proof Since A is full column rank, there exist a unitary matrix Q ∈ R
n×n and a nonsingular

upper triangular matrix R ∈ R
m×m such that

A = Q

⎡

⎣R
0

⎤

⎦. (3.7)
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Let Q = [Q1, Q2], where Q1 ∈ R
n×m and Q2 ∈ R

n×(n−m). The left-hand side of (3.6) can be
rewritten as

⎛

⎜⎝[RT 0]

⎡

⎣

⎛

⎝QT
1BQ1 Q

T
1 BQ2

QT
2BQ1 Q

T
2 BQ2

⎞

⎠ +

⎛

⎝RHRT 0

0 0

⎞

⎠

⎤

⎦
−1 ⎛

⎝R

0

⎞

⎠

⎞

⎟⎠

−1

.

By applying Lemma 3.1, the above term can be simplified as

(RT[RHRT +QT
1BQ1 −QT

1BQ2(QT
2BQ2)−1QT

2 BQ1]−1R)−1

= H +R−1[QT
1BQ1 −QT

1 BQ2(QT
2BQ2)−1QT

2 BQ1]R−T. (3.8)

Now, we look at the right-hand side of (3.6), which can be written as

H + (RTQT
1B

−1Q1R)−1 = H + R−1(QT
1B

−1Q1)−1RT . (3.9)

Noticing the fact that
⎛

⎝QT
1 BQ1 Q

T
1BQ2

QT
2 BQ1 Q

T
2BQ2

⎞

⎠
−1

=

⎛

⎝QT
1B

−1Q1 Q
T
1B

−1Q2

QT
2B

−1Q1 Q
T
2B

−1Q2

⎞

⎠ , (3.10)

Lemma 3.1 implies that

(QT
1B

−1Q1)−1 = QT
1BQ1 −QT

1 BQ2(QT
2BQ2)−1QT

2 BQ1. (3.11)

This relation, (3.8) and (3.9) show that (3.6) holds. �
A direct consequence of the above theorem is the following result.

Corollary 3.3 Let A ∈ R
n×m be full column rank, B ∈ R

n×n be symmetric positive definite,
and H ∈ R

m×m be symmetric positive definite. Then

lim
ε→0+

AT[εB +AHAT]−1A = H−1. (3.12)

The above results on real matrices help us to explore the relations between Buys’s update
and the classic update technique for the Lagrange multipliers.

First, we consider under what condition Buys’s update reduced to the class one. From (2.23),
we can write

W (λk, σk) = ∇2f(xk+1) −
∑

i∈Jk

(λ(i)
k − σ

(i)
k ci(xk+1))∇2ci(xk+1) + Āk+1Σ̄kĀ

T
k+1,

where Σ̄k = Diag(σ(i)
k , i ∈ Jk). If we replace

∇2f(xk+1) −
∑

i∈Jk

(λ(i)
k − σ

(i)
k ci(xk+1))∇2ci(xk+1)

by εB, and let ε→ 0+, the above lemma shows that update (2.29)–(2.30) would be changed to

λ
(i)
k+1 = λ

(i)
k − σ

(i)
k ci(xk+1), i ∈ Jk, (3.13)

λ
(i)
k+1 = 0, otherwise, (3.14)

which are exactly the same as the classical update formulae (1.8)–(1.9). Therefore, the class
update formulae (1.8)–(1.9) can be viewed in some sense as a special case of Buys’s update where
the matrix ∇2f(xk+1) −

∑
i∈Jk

(λ(i)
k − σ

(i)
k ci(xk+1))∇2ci(xk+1) is replaced by a zero matrix.
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In general, we denote

Bk = ∇2f(xk+1) −
∑

i∈Jk

(λ(i)
k − σ

(i)
k ci(xk+1))∇2ci(xk+1).

If Bk is positive definite, Theorem 3.2 implies that Buys’s update formulae (2.29)–(2.30) can
be written as

λ̄k+1 = λ̄k − Σ̄kc̄(xk+1) − (ĀT
k+1B

−1
k Āk+1)−1c̄(xk+1), (3.15)

λ
(i)
k+1 = 0, i 
∈ Jk. (3.16)

In a practical implementation of Buys’s formulae, we need to enforce

λ
(i)
k+1 ≥ 0 for all i = me + 1, . . . ,m. (3.17)

Our superlinear convergence results in the previous section suggest that (3.17) should be true
when xk is close to a local minimizer x∗ and when λk is sufficiently close to the true Lagrange
multiplier at x∗. However, in general case, we are not able to prove that our new update (3.15)
can ensure the non-negativity properties of the multipliers for inequality constraints. Thus, in
practice, if a negative λ(i)

k+1(j ∈ I(xk+1)) is computed by (3.15), we simply replace it by zero.

4 Discussions and Conclusion

In this paper, we re-derive a formula of Buys [1] for updating the Lagrange multipliers in the
augmented Lagrangian method. The update formula is obtained by applying Newton’s method
for feasibility conditions. Under certain conditions, we prove that Buys’s update technique
leads to the Q-quadratic convergence of the multipliers.

The theoretical results in this paper are obtained under the assumption that xk+1 is the
exact minimizer of the augmented Lagrange function. It would be interesting to analyze the case
when xk+1 is an approximate solution of (1.5), as some practical implementations of augmented
Lagrangian method do not solve (1.5) exactly. Whether there exists an efficient (fast convergent)
update formula for the Lagrange multipliers without requiring the exact solution of (1.5) is an
open question which is of importance both theoretically and practically.

The improvement we made on the update is achieved with the price that we need to use
second order information. If we apply an unconstrained optimization algorithm that uses sec-
ond order derivatives to solve problem (1.5), the new update formula can be easily obtained.
However, when the unconstrained optimization algorithm used for minimizing the augmented
Lagrange function does not compute any second order derivatives, additional computational
cost of calculating the second order derivatives is required in order to update the multipliers
by the new formula. Thus, it is interesting to investigate whether it is possible to obtain high
accurate approximation of

(ĀT
k+1B

−1
k Āk+1)−1c̄(xk+1) (4.1)

without using any second order information. This might be possible, as (4.1) is a vector though
its definition depends on the second order derivative of the Lagrange function. Now, let us
consider a different but similar approximation problem. Define λ̂k = λ̄k − Σ̄kc̄(xk+1) and

Ãk = (∇ci(xk), i ∈ I(xk+1)).

Consider the Lagrangian function

φ(x) = Lk(x, λ̂k) = f(x) −
∑

i∈I(xk+1)

λ̂
(i)
k ci(x). (4.2)
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The definition of xk+1 implies that

∇φ(xk+1) = 0 and ∇2φ(xk+1) = Bk. (4.3)

If Bk is positive definite, we have the following relation

B−1
k ∇φ(xk) = (∇2φ(xk+1))−1[∇φ(xk) −∇φ(xk+1)] ≈ xk − xk+1, (4.4)

which can be written as
B−1

k (∇f(xk) − Ãkλ̂k) ≈ xk − xk+1. (4.5)

This shows that the vector B−1
k (∇f(xk) − Ãkλ̂k), whose definition depends on second order

information, can be approximated by xk − xk+1, which is independent of any second order
derivatives. It is not clear whether we can also obtain good approximation to (4.1) without
using any second order derivatives.

Another interesting problem is whether the analysis in the paper can be extended to non-
smooth optimization, as many applications lead to non-smooth problems. For example, L1

minimization appeared in image processing is a very special non-smooth optimization, and
nuclear norm minimization in matrix optimization is another special non-smooth optimization.
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